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The virtue of simplicity
Tao Zhang & Kenneth H Britten

Multiple local motions must be combined to determine the direction of object motion, which is harder than it seems. 
A new paper proposes an elegant and simple solution to this problem, eminently realizable in feed-forward circuits.

needs to integrate these multiple V1 responses 
representing the motion of non-parallel moving 
contours. We can demonstrate this by using two 
V1 neurons (Fig. 1b). There is only one possible 
motion (red arrow), which indicates the actual 
object motion and contains the component 
motions observed by the two V1 cells. 

MT in primate visual cortex has abundant 
opportunity to integrate inputs from direc-
tionally selective cells in V1 (ref. 5). MT cells’ 
receptive fields are about 10 times bigger than 
those in V1, often encompassing multiple 
object contours6. The original observation, 
which has long begged for mechanistic expla-
nation, is that some neurons in MT clearly 
combine multiple motions to represent the 
unique pattern direction. Other neurons 
(‘component selective’) in MT behave much 
like expanded V1 cells, and responded to single 
contours but not the pattern as a whole. Many 
others responded in intermediate ways4. The 
paper by Rust et al. not only explains the emer-
gence of pattern responses, but also compactly 
captures circuit features that contribute to this 
diversity of response types in MT.

The new model of Rust and colleagues1 
(Fig. 2) contains two stages, a V1 stage and an 
MT stage. The V1 stage is designed to resem-
ble actual V1 data and contains a feature that 
turns out to be critical for the model’s success: 
two kinds of divisive inhibition. Such inhibi-
tion has been well documented in V1, though 

the details are still being worked out7,8. The 
two types can be thought of as those within 
single columns in V1 and those between 
columns. The V1 population then projects 
to an MT neuron, which weights and adds 
the inputs, then passes the  resulting signal 
through a nonlinearity that represents the  
spike  generation. This kind of linear-non-
linear (‘LN’) model has been very successful 
at capturing integration at many stages of 
the visual system9,10. The model was indi-
vidually adjusted for each cell— necessary 
for explaining neuronal variability—using a 
clever reverse-correlation method. Although 
it seems complex, the actual number of free 
parameters adjusted was relatively modest. 
Once developed, the model was tested against 
actual patterned stimuli of the sort commonly 
used in these sorts of experiments. The model 
passed this test convincingly, capturing the 
responses of the neurons with high fidelity.

One might reasonably ask at this point 
where the added value of another clever 
model lies, especially given that this particu-
lar phenomenon has already been successfully 
explained by other models, some also simple 
and elegant11–13. Models have two chief goals: 
the consolidation of our ideas (descriptive 
value) and the generation of useful new exper-
iments (predictive value). Simple, realistic 
models such as this one win by both metrics. 
The LN architecture at the heart of the Rust 

Physicists have long regarded simpler mod-
els as more valuable, no matter how complex 
the problem. Neuroscientists have not always 
embraced this notion, perhaps because of the 
confusing plethora of detail that the biology of 
the brain offers. The visual neuroscience of pat-
tern motion processing is typical of tractable 
vision problems—there is a welter of experi-
mental detail, along with a variety of models. 
However, models that work well to explain per-
ceptual phenomena are often difficult to instan-
tiate in ‘wetware.’ For these reasons, a simple 
model that explains such a complex perceptual 
problem in neuronally realistic terms provides 
considerable cause for rejoicing. 

The model of Rust et al. in this issue1 com-
bines two simple mechanisms to produce a 
very good account of how neurons in the mid-
dle temporal extrastriate visual cortex (MT, or 
equivalently V5) might acquire their selectivity 
for pattern direction. This well-studied, mid-
level area is highly specialized for the analysis 
of motion2,3. It receives direct inputs from pri-
mary visual cortex (V1) and in turn projects to 
premotor structures. One of the most provoca-
tive findings from MT is that neurons integrate 
multiple directions of motion to unambigu-
ously signal the motion of patterns—they can 
solve the so-called ‘aperture problem’4.

The aperture problem refers to the observa-
tion that an object’s direction of motion can be 
hard to track when information is available from 
a limited area of space. Neurons in V1 have very 
small receptive fields, and thus can only sample 
a small patch of the  moving object (Fig. 1a). This 
means that each V1 neuron can only capture the 
component of motion that is perpendicular to 
the moving edge (black arrow), which may not 
be the same as the actual moving direction of the 
object. A whole family of possible object motions 
will cause the same response in this V1 neuron. 
In other words, the motion of the moving object 
appears to be ambiguous to any single V1 neu-
ron. To solve this problem, the visual system 
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Figure 1  The aperture problem in an election year. (a) The circle represents the receptive field of a 
single V1 neuron, and the solid black arrow represents the observed motion component orthogonal 
to the moving contour. Dashed black arrows indicate different possible object motions, all of which 
contain the same orthogonal motion component. (b) Once two or more V1 cells are positioned along 
differently oriented contours of the object, one can reconstruct the actual object motion. In this case, 
each edge is consistent with a different family of possible motions, but there is only one motion (red 
arrow) consistent with both observations. 
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et al. model1 is an idea of considerable power. 
Using it successfully against a long-standing 
computational problem is further evidence of 
its generality; this is a significant consolida-
tion. The success of this model in this instance 
will no doubt drive others to test this architec-
ture against their favorite problems, and many 
more complex problems await. 

The model also makes a number of specific 
predictions about the circuitry between corti-
cal areas. In particular, it proposes particular 
afferent architecture to bestow either simple 
(component) or more complex (pattern) 
responses on MT cells. These predictions are, 
unfortunately, rather difficult to test at pres-
ent, as the tests will require paired recordings 
between MT neurons and their afferents. 
Such experiments, though possible with cur-
rent technology, are arduous, difficult and 
slow. Some of the simplifying predictions will 
no doubt prove wrong, as the authors freely 
admit. MT receives afferents from many 
sources other than V1, and indeed these are 
likely to convey different kinds of informa-
tion. Another simple prediction of the model 
is almost certainly wrong on the basis of cur-
rent evidence; we are pretty sure that divisive 
inhibition operates not only in V1, but also in 
MT itself14. So, bringing a circuit reality to the 
nonlinearities at the MT level is a target for the 
next generation of experiments. 

The lesson from physics is that models turn-
ing out to be wrong is all part of the game and 
should be viewed with approval. We get to bet-
ter understanding by climbing a ladder built 
of the bones of dead models. If there is a core 
truth, some useful generality achieved by any 

generation of model, this is major progress. 
There has long been a desire to find general 
mechanisms of information processing that 
will apply across cortical areas15, and this 
paper marks a notable step in that direction. It 
is starting to look as if the LN family of models 
might be such a unifying framework.
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Figure 2  Structure of the Rust et al. model. Each black arrow indicates the preferred direction of a 
V1 neuron in a (hypothetical) population of afferent neurons. Each cell’s response is reduced by both 
tuned (recurrent) and untuned (lateral) inhibition from V1 neurons. Additionally, the tuning bandwidth 
of each V1 neuron is a free parameter. The MT cell integrates responses from V1 population inputs 
by calculating a weighted sum; inputs can be either excitatory or inhibitory. The weighted sum then passes 
through a nonlinear function to be transformed to firing rate.

New clues for axonal repair in ALS

In amyotrophic lateral sclerosis (ALS, also called Lou Gehrig’s disease), corticospinal neurons 
progressively degenerate, causing the loss of motor function and eventual paralysis seen in 
these individuals. Damage to these neurons also contributes to the loss of motor function in 
 spinal cord injury. However, little is known about the mechanisms that regulate the survival and 
 differentiation of corticospinal neurons. A paper on page 1371 by Hande Özdinler and Jeffrey 
Macklis describes new techniques to purify and culture these motor neurons, allowing the 
authors to  dissect the mechanisms by which the morphology of these neurons is regulated.

The authors retrogradely labeled corticospinal neurons with fluorescent  microspheres 
and used fluorescence-activated cell sorting to obtain homogeneous populations. These 
cultured neurons maintained the morphological and molecular phenotypes of  developing 
corticospinal neurons in vivo. Insulin-like growth factor (IGF-1)  specifically enhanced 
axonal outgrowth in these neurons, an effect mediated by the IGF-1  receptor and the PI3K 
and MAPK  signaling pathways. Brain-derived neurotrophic factor, in  contrast, induced 
dendritic branching and outgrowth, but did not affect axonal  outgrowth. In vivo blockade 
of the IGF-1 receptor caused axonal outgrowth defects in the corticospinal tract. Critically, 
this effect of IGF-1 was  independent of its effect on survival of these neurons, as corticospinal neurons isolated from mice lacking the 
apoptosis protein Bax behaved similarly to  wild-type neurons in response to locally applied IGF-1. By demonstrating that IGF-1 is a potent 
enhancer of axonal outgrowth in  corticospinal  neurons, these results may help guide future efforts to use IGF-1 to enhance the outgrowth 
and functional connectivity of damaged neurons in diseases such as ALS and primary lateral sclerosis.
Kalyani Narasimhan
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